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Dark solitons in electron-positron plasmas
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We demonstrate that a dark soliton is a stable nonlinear coherent mode in electron-positron plasmas. The
dark soliton comprises the minimum of the electromagnetic energy density and the minimum of the plasma
density. Contrary to a bright soliton, the dark soliton can advect the trapped charged particles. The energy of
trapped particles is well above the kinetic energy of the particles in the background plasma.
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The properties of coherent nonlinear structures
electron-positron plasmas have attracted a great attentio
regard with the problems of astrophysical and laborat
plasmas@1#. The electron-positron plasma has been cons
ered to be formed in the pulsar polar regions@2#, in early
universe@3#, and the cosmologicalg-ray bursts~GRB!. For
example, the GRB~see review@4#! are explained as to b
produced in the fireballs that consist of electron-posit
pairs and radiation. Multiterawatt and petawatt power la
pulses interacting with matter also produce electron-posi
plasmas@5#. As in the case of the electron-ion plasma, t
electron-positron plasma with the electromagnetic radia
can be a subject of various instabilities, which break up
mogeneous modes into solitary waves. Often, solitons
gether with vortices are regarded as elementary entities c
prising the turbulence. In the case of electron-ion plasm
relativistic electromagnetic solitons have been studied a
lytically @6–9#, and with a help of particle-in-cell simulation
@10#. For the case of the electron-positron~ion! plasma the
occurrence of bright soliton solutions has been discusse
details in Ref.@11#. In the electron-positron pair plasma, du
to the equal electron and positron masses, novel feat
come into play when we describe elementary nonlin
structures. The electron-positron plasma in the pulsar m
netosphere is magnetized, but the plasma at early univer
likely to be unmagnetized~see, e.g., a discussion on the p
rameters in Ref.@1#!. The plasma inside the GRB fireball a
the initial phase of its expansion is also unmagnetized.
note that the electron-ion plasma in the field of extrem
high intensity laser pulse can exhibit some properties of
electron-positron plasma.

The aim of the present paper is to investigate the prop
ties of the relativistic solitary waves in the electron-positr
pair unmagnetized cold plasmas. Exact analytical nonlin
solutions are found that show that natural coherent struct
are dark solitons. Dark solitons are known in optical syste
~see reviews@12#, where the properties, excitation, and s
bility of dark solitons are discussed!, and they have been
observed and discussed also in the Bose-Einstein conde
@13#. In a recent paper@14#, an analysis similar to the on
presented here is performed taking into account therma
fects, and the solutions are obtained in a limiting case.

We use the hydrodynamics approximation to descr
both the electron and positron components, and assume
plasma to be cold with zero positron and electron tempe
ture. We consider the Maxwell’s equations for the wave v
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tor and scalar potentialsA and f, and the hydrodynamic
equations for the density and the kinetic momentump6 of
positrons and electrons in the Coulomb gauge (“•A50), for
the one-dimensional case in which]y5]z50. In this case,
the relationsAx50, andp'657A' hold, where' refers to
the direction perpendicular to thex direction. We then look
for a solution of the system of the formA'[Ay1 iAz
5a(j)exp@2ivt1ikx1iu(j)# ~circularly polarized wave!,
wherea is a real quantity and the variablej is defined asj
5(x2Vt)/(12V2)1/2, V being velocity. The scalar potentia
f, and the fluid quantities, i.e., the densityn6 , and the par-
allel kinetic momentumpx6 are assumed to depend only o
the variablej. Dimensionless quantities are used. Leng
time, velocity, momentum, vector, and scalar potential, a
density are normalized overc/vpe , vpe , c, mec, mec

2/e,
and n0, respectively, wherevpe5(4pn0e2/me)

1/2 the elec-
tron plasma frequency, andn0 the unperturbed electron~and
positron! density. The following closed system of equatio
for the potentials is obtained, which describes coupled La
muir and circularly polarized transverse electromagne
~e.m.! waves,

d2f

dj2
5VS c2

R2
2

c1

R1
D , ~1!

d2a

dj2
1aS v̄22 k̄2

a0
4

a4D 5aVS 1

R2
1

1

R1
D , ~2!

du

dj
52 k̄S 12

a0
2

a2D , ~3!

where v̄5(v2kV)/(12V2)1/2, and k̄5(k2vV)/(1
2V2)1/2 are the Doppler shifted frequency and wave vect
respectively, and the functionsc65(11a0

2)1/27f and R6

5@c6
2 2(11a2)(12V2)#1/2 have been introduced. Thex

component of the kinetic momentum, the gamma factorg6

5(11px6
2 1a2)1/2, and the density can be expressed

terms of the potentials aspx65(Vc62R6)/(12V2), g6

5(c62VR6)/(12V2), n65V(c6 /R62V)/(12V2).
To derive the above system, it has been assumed tha

e.g., j52`, the electron density is equal to the positro
density, the electron and positronx momentum component is
©2001 The American Physical Society01-1
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zero, the electrostatic potentialf50, the electromagnetic
wave amplitudea is 6a0, and the phaseu is constant.
This system of equations differs from that for bright solito
mainly because there is an additional equation for the ph
Actually, in case of bright solitons the solution of Eq.~3!

is simply u5u02 k̄j, so that the phase term inA' reads
exp@2iv̄t1iu0#, wheret5(t2Vx)/(12V2)1/2 is the proper
time in the moving frame~see also Ref.@8#, where a similar
system was derived for the investigatio
of bright solitons in an electron-ion plasma with fixed ion!.
In the case of dark solitons, the phase behavior is in gen
nontrivial. Note that the system admits a fir
integral (da/dj)21v̄2a21 k̄2a0

4/a22(df/dj)2/(12V2)
12V(R21R1)/(12V2)5const. Here, we are looking fo
localized solutions for the potentialsf, and a, i.e., df/dj
5da/dj50 at infinity. It is found thatf50 is the only
solution of the Poisson equation~1! with the above boundary
conditions. Thus, the condition of electrical neutrality hol
exactly for localized nonlinear waves in the electron-posit
plasma, i.e., the relationsn25n1 and vx15vx2 are satis-
fied. Using the solutionf50, from Eq. ~2! we obtain a
closed equation for the amplitude of the vector potential

d2a

dj2
1V2a1 k̄2aS 12

a0
4

a4D 2aF~a2!50, ~4!

where F(a2)52V/@V21a0
22a2(12V2)#1/2 and V2[v̄2

2 k̄25v22k2. By imposing the constraint thata56a0 is a
stationary solution of Eq.~4!, the nonlinear dispersion rela
tion reads

V25
2

A11a0
2

. ~5!

Equation~4! has an exact solution for dark solitons of arb
trarily large amplitude. Introducing the normalized quant
ā5a@(12V2)/(V21a0

2)#1/2, we rewrite Eqs.~3! and ~4!,
with V given by the dispersion relation, as

u852bS 12
ā0

2

ā2D , ~6!

ā91ā1b2āS 12
ā0

4

ā4D 5āS 12ā0
2

12ā2D 1/2

, ~7!

where the symbol8 stands for derivative with respect toj̄
5Vj, and b5 k̄/V5(v̄2/ k̄221)21/2. The first integral of
Eq. ~7! reads

~ ā8!22~A12ā0
22A12ā2!21b2

~ ā22ā0
2!2

ā2
5K. ~8!

The topology of the space (ā,ā8) of Eq. ~8! depends on the
value of the parameterb. For b50, the origin of the phase
plane, (ā50,ā850), corresponds to anO point, the points
ā56ā0 , ā850 to X points, and the separatrix connects t
06640
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two X points together@see Fig. 1~a!#. For bÞ0, Eq. ~8! di-
verges on the axisā50, and the fixed point areā56ā0, and
ā56ā1, solutions of the equation

b2S 12
ā0

4

ā4D 115S 12ā0
2

12ā2D 1/2

. ~9!

They correspond toX points andO points, respectively,
when conditionA 0

2.0 is fulfilled ~anduā0u,uā1u), and vice-

versa, whereA 0
25ā0

224b2(12ā0
2). In this case, there are

two separatrix, one in each semiplane, which make a l
around theO points@see Fig. 1~b!#. From the analysis of the
phase space, it is found that the localized solutions, wh
correspond to the trajectory on the separatrix, are ‘‘blac
solitons for b50, ~i.e., solutions of ‘‘kink’’ type!, and
‘‘gray’’ solitons for bÞ0. The solution is obtained integra
ing Eq. ~8! with K50, and can be written implicitly as

6 j̄5
1

A11b2
sin21 AS 11b2

11b2ā0
2D 1/2

12
A12ā0

2

A 0

tanh21
A0

A

3
A11b2ā0

22~11b2!A12ā22b2A12ā0
2

A11b2ā0
22~112b2!A12ā0

2
,

~10!

where the functionA 25ā22b2@(12ā0
2)1/21(12ā2)1/2#2

has been introduced. The phaseu can be obtained in terms o
ā integrating Eq.~6!. Note that forb50 the phaseu is
constant so that the phase term for the wave vector pote
is simply exp(2iv̄t1iu0) with v̄5V, i.e., in the moving
frame the wave oscillates in time with the Doppler shift
frequency equal to the nonlinear plasma frequencyV. For
bÞ0, the phaseu reads

u2u051sin21
A
a

2
b

A11b2
sin21 AS 11b2

11b2ā0
2D 1/2

.

~11!

FIG. 1. Contours of Eq.~8! in the phase space (ā,ā8), for ā0

50.8 andb50 ~a!, andb50.01 ~b!.
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DARK SOLITONS IN ELECTRON-POSITRON PLASMAS PHYSICAL REVIEW E64 066401
In this case, the phaseu changes fromu06S/2 to u07S/2 as
j goes from2` to 1`, Sbeing the total phase shift acros
the soliton.

In the low amplitude case (ā0 ,ā!1), the solution of Eq.
~8! readsā25ā0

2 tanh2(kj̄)14b2 sech2(kj̄), wherek5(ā0
2/4

2b2)1/2, with b2,ā0
2/4. From the above expression, it

easily seen that the solution is the standard kink soli
~‘‘black’’ soliton ! for b50, and the ‘‘gray soliton’’ forb

Þ0, with minimum valueā(j50)52b. In the same limit,
the phaseu is given byk̄ tan(u2u0)5k tanh(kj̄) for bÞ0.

From the expression for the fluid quantities, it is fou
that the momentumpx6 is always negative, and that th
density is always less than 1~density hole!. In the center of
the soliton atj50, the modulus of the vector field amplitud
is minimum, together with the density and the momentum
Figs. 2 and 3, the e.m. wave amplitudea, and the density are
plotted versusj̄, for a fixed value ofa0, and different values
of b and V, for the case of ‘‘black’’ and ‘‘gray’’ solitons,
respectively. For fixeda0 and V the minimum values are
found in the case of the ‘‘black’’ soliton, i.e., atb50. We see
that for decreasing velocities, the width of the soliton d
creases~in the low amplitude approximation ask21), while
the density profile inside the soliton becomes deep, and
value very low but finite. The particles velocity increases
modulus at the same time.

We note that the full problem of the soliton stability~both
dark and bright soliton stability in electron-ion and electro
positron plasmas! has not yet been investigated analytical

FIG. 2. Behavior of the vector potential amplitudea ~a! and of

the densityn ~b! as a function ofj̄, for a ‘‘black’’ soliton with b
50. The chosen parameters area051, andV50.02,0.5,0.9~curves
A–C).

FIG. 3. Same as in Fig. 2 for a ‘‘gray’’ soliton. The chose
parameters area051, V50.1, andb50,0.5,5 ~curvesA–C).
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starting from the full set of the equation including the stu
of the backward and forward stimulated Raman scatter
However, the stability problem can be solved in the fram
work of the envelope approximation as described in@12#. To
this goal, we note that if, instead of the previous definiti
for A' , we assumeAy1 iAz5A(j,t)exp(2ivt1ikx) with A
complex and approximate the wave operator as]xx

2 A'

2] tt
2A'']jj

2 A12i v̄]t A1(v̄22 k̄2)A, the following non-
linear Schro¨dinger ~NLS! equation forA is obtained

]jj
2 A12i v̄]t A1V2A2AF~ uAu2!50. ~12!

In Ref. @12#, dark solitons are defined as a solution of E
~12! of typeA5a(h)exp@iu(h)#, whereh5j2ut, andu is a
velocity. After normalization, it is found thata, andu satisfy
Eqs. ~6!,~7! in the variableh, where nowb5uv̄/V. The
stability criterion for dark solitons@12# readsdP/db.0,
whereP52b*2`

1`dh(a22a0
2)2/a2 is the renormalized mo-

mentum associated to the NLS equation~12!. By direct ana-
lytical integration, it can be shown that the dark solito
described by Eq.~10! are stable for any value of the ampl
tude and velocity. The explicit expression fordP/db is
rather cumbersome, and it will not be presented here.

The dark solitons discussed above are regions of h
gradient ('ka0) of the electromagnetic field that can prop
gate with a speed arbitrarily close to the speed of light
vacuum. The radiation pressure of the soliton can accele
charged particles depending on the phase of the wa
particle interaction. The particles can be injected into
soliton due to numerous reasons, e.g., thermal effects~not
discussed in the present paper! as well as nonlinear wave
breaking due to propagation of the soliton in another plas
Furthermore, a sufficiently low density electron beam load
in a proper place can supply the electrons to be further
celerated, without, at the same time, perturbing the soli
parameters. For example, in the case of the laser wake
accelerator, the wake-wave is stable and the injection of
charged particles is considered to be provided by some of
above mentioned mechanisms~see Refs.@15#!.

To compute the energy variation, we write the Ham
tonian of a test particle in the field of the soliton, neglecti
the back reaction of fast particles on the soliton itself. Let
denote byP the particle canonical momentum, conjugate
the variablex. The Hamiltonian reads

H~x,P,t !5~11uP7Au2!1/2.

Introducing Py1 iPz5P' exp(ia), which is a constant of
motion, and by means of a canonical transformation, w
z5x2Vt, Pi5Px , we get

H~z,Pi ,t !5A11Pi
21uP'7a~z!exp@2 ic~z,t !#u22VPi ,

~13!

with c5(v2kV)t2kz2u(z)1a. This Hamiltonian repre-
sents the test particle energy in the reference frame in wh
the soliton is at rest. It has (111/2) degrees of freedom, an
can exhibit a complex behavior. In the following, we analy
in detail the case forP'50 andk5vV ~i.e., the ‘‘black’’
soliton!, leaving the analysis of the full problem to a futu
1-3
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D. FARINA AND S. V. BULANOV PHYSICAL REVIEW E 64 066401
investigation. In this specific case, the particle motion is
tegrable since the Hamiltonian becomes time independe

H~z,Pi!5A11Pi
21a2~z!2VPi . ~14!

Note that the energy variation is simply proportional to t
momentum variation,dg5VdPi . The phase plot that corre
sponds to constant values of the Hamiltonian~14! is shown
in Fig. 4. In the (z,Pi) plane, there is anO point at z50,
Pi5V/(12V2)1/2, at H5HO5(12V2)1/2, and twoX points
at z56`, Pi5V@(11a0

2)/(12V2)#1/2, and H5HX5@(1
2V2)(11a0

2)#1/2. For HO,H,HX , the trajectories corre
spond to particles that are trapped in the field of the d
soliton. We see that the dark soliton contrary to the bri
soliton can advect trapped particles. While the partic

FIG. 4. Phase plot of the Hamiltonian system~14! in the (z,Pi)
plane, fora051, b50, andV50.99.
06640
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bounce inside the soliton their momentum~and energy!
changes. The highest momentum is gained by the parti
with the trajectory close to the separatrix. It varies betwe
minimum and maximum values given bypmin,max5@V(1
1a0

2)1/27a0#/(12V2)1/2. In the limit a0@1, we obtain
pmax5a0@(11V)/(12V)#1/2.

In conclusion, the problem of the existence of coher
nonlinear structures in the pure electron-positron pair plas
described by the full set of relativistic hydrodynamics equ
tions and Maxwell equations has been solved. We have d
onstrated that the natural nonlinear localized mode in
electron-positron plasma is the dark soliton. The electr
positron plasma in this case exhibits properties similar
those in the Bose-Einstein condensate with the positive s
tering length@16#. Inside the dark soliton, the plasma is ele
trically neutral, this condition being exact, contrary to t
case of the solitons in the electron-ion plasma in the lo
wavelength quasineutral approximation. The dark soli
corresponds to the minimum of the electromagnetic ene
density and to the minimum of the plasma density, a
propagates without change of its form with velocity arb
trarily small or arbitrarily close to the speed of light i
vacuum. The dark soliton has a continuous spectrum c
trary to the bright solitons in the electron-ion plasma@17#.
We note here that in the electron-ion plasma, dark solit
are found in a range of very low propagation velocity,V
&Ame /mi @18#. We have also shown that the dark solito
can advect the particles trapped inside effective wells form
by the radiation pressure. The trapped particles can gain
energy substantially higher than the kinetic energy of
particles of the background plasma inside the soliton. T
bunches of fast particles correlated with the variations of
electromagnetic field provide an observational signature
the dark solitons.
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