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Dark solitons in electron-positron plasmas
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We demonstrate that a dark soliton is a stable nonlinear coherent mode in electron-positron plasmas. The
dark soliton comprises the minimum of the electromagnetic energy density and the minimum of the plasma
density. Contrary to a bright soliton, the dark soliton can advect the trapped charged patrticles. The energy of
trapped particles is well above the kinetic energy of the particles in the background plasma.
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The properties of coherent nonlinear structures intor and scalar potentials and ¢, and the hydrodynamic
electron-positron plasmas have attracted a great attention guations for the density and the kinetic momentomof
regard with the problems of astrophysical and laboratorypositrons and electrons in the Coulomb gau§e A= 0), for
plasmag 1]. The electron-positron plasma has been considthe one-dimensional case in whigh=3,=0. In this case,
ered to be formed in the pulsar polar regidi23, in early  the relationsA,=0, andp, . = FA, hold, wherelL refers to
universe[3], and the cosmologicaj-ray bursts(GRB). For  the direction perpendicular to thedirection. We then look
example, the GRBsee review[4]) are explained as to be for a solution of the system of the form, =A +iA,
produced in the fireballs that consist of electron-positron=a(¢)exd —iwt+ikx+id(&)] (circularly polarized wave
pairs and radiation. Multiterawatt and petawatt power lasewherea is a real quantity and the variabéeis defined as
pulses interacting with matter also produce electron-positror= (x— Vt)/(1—V?)'2 V being velocity. The scalar potential
plasmag5]. As in the case of the electron-ion plasma, the¢, and the fluid quantities, i.e., the density , and the par-
electron-positron plasma with the electromagnetic radiatiorallel kinetic momentunp,. are assumed to depend only on
can be a subject of various instabilities, which break up hothe variableé. Dimensionless quantities are used. Length,
mogeneous modes into solitary waves. Often, solitons totime, velocity, momentum, vector, and scalar potential, and
gether with vortices are regarded as elementary entities conglensity are normalized over wpe, Wpe, C, MC, mec?/e,
prising the turbulence. In the case of electron-ion plasmasand n,, respectively, Wher@pe=(477noez/me)1/2 the elec-
relativistic electromagnetic solitons have been studied anaron plasma frequency, ang the unperturbed electra@and
lytically [6—9], and with a help of particle-in-cell simulations positron density. The following closed system of equations
[10]. For the case of the electron-posittimm) plasma the for the potentials is obtained, which describes coupled Lang-

occurrence of bright soliton solutions has been discussed imuir and circularly polarized transverse electromagnetic
details in Ref[11]. In the electron-positron pair plasma, due (e.m) waves,

to the equal electron and positron masses, novel features
come into play when we describe elementary nonlinear

2

structures. The electron-positron plasma in the pulsar mag- d_¢: (‘/'__ﬁ) (1)
netosphere is magnetized, but the plasma at early universe is dée? Ro Ry
likely to be unmagnetizeésee, e.g., a discussion on the pa-
rameters in Ref[1]). The plasma inside the GRB fireball at ) 4
the initial phase of its expansion is also unmagnetized. We —“ia 52_(2@ —aV i+i) @)
note that the electron-ion plasma in the field of extremely dé&? at R. R/’
high intensity laser pulse can exhibit some properties of the
electron-positron plasma. 2

The aim of the present paper is to investigate the proper- %: X 1_@ &)
ties of the relativistic solitary waves in the electron-positron dé a2/’

pair unmagnetized cold plasmas. Exact analytical nonlinear
solutions are found that show that natural coherent structures — 12 —
are dark solitons. Dark solitons are known in optical system§"hezrell2 0=(0—kV)/(1-V)™, —and k=(k-wV)/(1
(see reviewg12], where the properties, excitation, and sta-— V) are the Doppler Sh_lfted frequengyl/azlnd wave vector,
bility of dark solitons are discussgdand they have been respectively, and the functiong. =(1+ap) ™"+ ¢ andR..
observed and discussed also in the Bose-Einstein condensatd ¥/ — (1+a?)(1-V?)]¥2 have been introduced. The
[13]. In a recent papef14], an analysis similar to the one component of the kinetic momentum, the gamma fagtor
presented here is performed taking into account thermal ef=(1+pZ. +a?)¥? and the density can be expressed in
fects, and the solutions are obtained in a limiting case. terms of the potentials ag,. = (V¢ —R)/(1—V?), y-

We use the hydrodynamics approximation to describe= (. —VR.)/(1—V?), n.=V(¢. IR.—V)/(1—V?).
both the electron and positron components, and assume the To derive the above system, it has been assumed that at,
plasma to be cold with zero positron and electron temperae.g., £= —, the electron density is equal to the positron
ture. We consider the Maxwell’s equations for the wave vec-density, the electron and positrammomentum component is
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zero, the electrostatic potentigi=0, the electromagnetic  (a)[ (b)
wave amplitudea is *ag, and the phase is constant. 05
This system of equations differs from that for bright solitons _ | _,
mainly because there is an additional equation for the phase a’lp a
Actually, in case of bright solitons the solution of E() 0.0 0.0
is simply 6= 6,—k¢, so that the phase term i, reads ‘

exd —ioT+ib,), wherer=(t—Vx)/(1—V?)¥?is the proper _os|} 05
time in the moving framésee also Ref.8], where a similar / ‘
system was derived for the investigations Te————p—=2——F = =

of bright solitons in an electron-ion plasma with fixed inns

In the case of dark solitons, the phase behavior is in general
nontrivial. Note that the system admits a first FIG. 1. Contours of Eq(8) in the phase spacea(a’), for a,
integral  da/dé)?+ w?a®+k?aj/a’— (d¢/d€)?/(1—V?) ~ =0.8 andB=0 (a), and5=0.01(b).

+2V(R_+R,)/(1—V?) =const. Here, we are looking for

localized solutions for the potential, anda, i.e., d¢/d¢  two X points togethefsee Fig. 18)]. For #0, Eq.(8) di-
=da/dé=0 at infinity. It is found that¢=0 is the only verges on the axia= 0, and the fixed point ar@= +a,, and
solution of the Poisson equati¢h) with the above boundary a=+a,, solutions of the equation

conditions. Thus, the condition of electrical neutrality holds

. . . . — 1/2
exactly for localized nonlinear waves in the electron-positron . & 1-a2
plasma, i.e., the relations_=n, andv,,=v,_ are satis- B 1- = +1= 22 (C)

fied. Using the solutionp=0, from Eg. (2) we obtain a

closed equation for the amplitude of the vector potential They correspond toX points andO points, respectively,

a ., a’ , when condition42>0 is fulfilled (and|a,| <|a4|), and vice-
d—§2+Q at+kal 1- 2 —aF(a’)=0 4 versa, whered2=a2—48%(1—a2). In this case, there are
two separatrix, one in each semiplane, which make a loop

where F(a2)=2V/[V2+aﬁ—az(l—vz)]l’z and 02=? around theD pqin.ts[see Fig. 1b)]. From .the analygis of the.
phase space, it is found that the localized solutions, which

correspond to the trajectory on the separatrix, are “black”

solitons for 8=0, (i.e., solutions of “kink” type, and

— k2= w?—k2. By imposing the constraint that= = a, is a
stationary solution of Eq4), the nonlinear dispersion rela-

tion reads “gray” solitons for 8#0. The solution is obtained integrat-
2 ing Eqg. (8) with K=0, and can be written implicitly as
02= . (5) 12
Ji+a2 1 ( 1+ B2 )
+é= sintA
Equation(4) has an exact solution for dark solitons of arbi- V1+ B2 1+B25(2)
trarily large amplitude. Introducing the normalized quantity
a=a[(1-V?)/(V?+a3)]*? we rewrite Egs.(3) and (4), s 1-a tanh‘le

with () given by the dispersion relation, as 0

.
——/3(1— a°) ®) Virpa- (1+ ) V1-a>~ g\ 1-aj
Vi1+p2a3—(1+2p%)\1-a3 ’

o Eg l_g% 1/2
a'tatplal1-=|=al —| . () (10
a 1-a
where the functionA?=a?- g2 (1—a3)"?+(1—a?)?)?

where the symbol stands for derivative with respect ©  has been introduced. The phasean be obtained in terms of
=0¢, and B=k/IQ=(w?/k*~1)"2 The first integral of 73 integrating Eq.(6). Note that for =0 the phased is

Eq. (7) reads constant so that the phase term for the wave vector potential
(a 22— )2 is simply expCiwT+ify) with 0=, i.e., in the moving
(@')2—(V1-ai—V1-a?)2+p2——=— (8  frame the wave oscillates in time with the Doppler shifted

frequency equal to the nonlinear plasma frequeficyFor

_ B#0, the phase reads
The topology of the spacea(a’) of Eq. (8) depends on the

value of the parametegs. For =0, the origin of the phase A B N 1+ B2 vz

— . . 60— 6yp=+sin ~—— sin
plane, @=0,a’=0), corresponds to a® point, the points a 1+p2 1+,32§(2)
a==*ag, a' =0 to X points, and the separatrix connects the (11
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FIG. 2. Behavior of the vector potential amplitudda) and of

the densityn (b) as a function OE for a “black” soliton with 8
=0. The chosen parameters agge=1, andV=0.02,0.5,0.9curves
A-C).

In this case, the phagkechanges frond,+ S/2 to 6,+ S/2 as
& goes from—o0 to +, Sbheing the total phase shift across
the soliton.

In the low amplitude casea_(, a< 1), the solution of Eq.
(8) readsa’= a3 tanif(x&)+48? sec(x &), wherex=(a3/4
— B?)Y2, with p?<a2/4. From the above expression, it is

easily seen that the solution is the standard kink solito
(“black” soliton) for g=0, and the “gray soliton” for3

#0, with minimum valiea(§=0):2ﬁ. In the_same limit,
the phasé) is given byktan(f— 6,) = x tanh(<€) for 8+0.
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starting from the full set of the equation including the study
of the backward and forward stimulated Raman scattering.
However, the stability problem can be solved in the frame-
work of the envelope approximation as describefilip]. To

this goal, we note that if, instead of the previous definition
for A, , we assumé\ +iA,=A(¢, 7)exp(—iwt+ikx) with A
complex and approximate the wave operator (ﬁ§AL

— GhAL ~ T2 A+ 2iwd, A+ (0?—K?)A, the following non-
linear Schrainger (NLS) equation forA is obtained

Iz A+ 2iwd, A+ Q?A—AF(|A]>)=0. (12)

In Ref. [12], dark solitons are defined as a solution of Eq.
(12) of typeA=a(n)exdib(n)], wherep=£&—ur, anduis a
velocity. After normalization, it is found that, and ¢ satisfy
Egs. (6),(7) in the variablen, where nowB=uw/{). The
stability criterion for dark solitong12] readsdP/dgB>0,
whereP=— B[ " Zdy(a?—aj3)?/a? is the renormalized mo-
mentum associated to the NLS equati{@®). By direct ana-
lytical integration, it can be shown that the dark solitons
described by Eq(10) are stable for any value of the ampli-
tude and velocity. The explicit expression fdP/dg is
father cumbersome, and it will not be presented here.

The dark solitons discussed above are regions of high
gradient & «ag) of the electromagnetic field that can propa-
gate with a speed arbitrarily close to the speed of light in
vacuum. The radiation pressure of the soliton can accelerate

From the expreSSion for the fluid quantities, it is found Charged partides depending on the phase of the wave-

that the momentunp,.. is always negative, and that the
density is always less than(@lensity hole. In the center of
the soliton att =0, the modulus of the vector field amplitude

particle interaction. The particles can be injected into the
soliton due to numerous reasons, e.g., thermal effeuis
discussed in the present papes well as nonlinear wave

is minimum, together with the density and the momentum. Inpreaking due to propagation of the soliton in another plasma.

Figs. 2 and 3, the e.m. wave amplitugleand the density are

plotted versug, for a fixed value ofay, and different values
of B andV, for the case of “black” and “gray” solitons,
respectively. For fixeda, and V the minimum values are
found in the case of the “black” soliton, i.e., @=0. We see

Furthermore, a sufficiently low density electron beam loaded
in a proper place can supply the electrons to be further ac-
celerated, without, at the same time, perturbing the soliton
parameters. For example, in the case of the laser wake field
accelerator, the wake-wave is stable and the injection of the

that for decreasing velocities, the width of the soliton de-charged particles is considered to be provided by some of the

creasegin the low amplitude approximation as 1), while

above mentioned mechanisiisee Refs[15]).

the density profile inside the soliton becomes deep, and its To compute the energy variation, we write the Hamil-
value very low but finite. The particles velocity increases intonian of a test particle in the field of the soliton, neglecting

modulus at the same time.
We note that the full problem of the soliton stabilityoth

dark and bright soliton stability in electron-ion and electron-

positron plasmashas not yet been investigated analytically,
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FIG. 3. Same as in Fig. 2 for a “gray” soliton. The chosen

parameters arag=1, V=0.1, andB=0,0.5,5(curvesA-C).

the back reaction of fast particles on the soliton itself. Let us
denote byP the particle canonical momentum, conjugate to
the variablex. The Hamiltonian reads

H(x,P,t)=(1+|PFA|?)Y2

Introducing Py +iP,=P, exp{«a), which is a constant of
motion, and by means of a canonical transformation, with
{=x—=Vt, P|=P,, we get

H(Z, Py, =V1+Pf+[P Fa(O)exd —ig(L,D]*~ VP,
(13)

with = (o —kV)t—k{— 6({) + a. This Hamiltonian repre-
sents the test particle energy in the reference frame in which
the soliton is at rest. It has (11/2) degrees of freedom, and
can exhibit a complex behavior. In the following, we analyze
in detail the case foP, =0 andk=wV (i.e., the “black”
soliton), leaving the analysis of the full problem to a future
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bounce inside the soliton their momentutand energy
changes. The highest momentum is gained by the particles
with the trajectory close to the separatrix. It varies between
minimum and maximum values given bPmin max=[V(1
+ad)?Tag]/(1-V?)Y2 In the limit ap>1, we obtain
Pmax=2adl (L+V)/(1- V)2,

In conclusion, the problem of the existence of coherent
nonlinear structures in the pure electron-positron pair plasma
described by the full set of relativistic hydrodynamics equa-
tions and Maxwell equations has been solved. We have dem-
onstrated that the natural nonlinear localized mode in the
electron-positron plasma is the dark soliton. The electron-
positron plasma in this case exhibits properties similar to
15 -10 -5 o 5 10 15 those in the Bose-Einstein condensate with the positive scat-

¢ tering length16]. Inside the dark soliton, the plasma is elec-

trically neutral, this condition being exact, contrary to the

case of the solitons in the electron-ion plasma in the long-
wavelength quasineutral approximation. The dark soliton
corresponds to the minimum of the electromagnetic energy

investigation. In this specific case, the particle motion is in-dénsity and to the minimum of the plasma density, and
tegrable since the Hamiltonian becomes time independent Propagates without change of its form with velocity arbi-

trarily small or arbitrarily close to the speed of light in
H(Z,P)=\1+Pf+a*({)~VP,. vacuum. The dark soliton has a continuous spectrum con-
trary to the bright solitons in the electron-ion plaspda].
Note that the energy variation is simply proportional to thewe note here that in the electron-ion plasma, dark solitons
momentum variationgy=V P . The phase plot that corre- are found in a range of very low propagation veloci,
sponds to constant values of the Hamilton{d#) is shown < ./m_7m, [18]. We have also shown that the dark soliton

10

FIG. 4. Phase plot of the Hamiltonian syst¢id) in the (¢, P))
plane, forag=1, =0, andV=0.99.

(14

in Fig. 4. In the ¢,P)) plane, there is a® point at{=0,
Pi=V/(1-V3)12 atH=Ho=(1-V?"2 and twoX points
at ==, Pj=V[(1+ad)/(1-V?]¥2 and H=Hy=[(1

can advect the particles trapped inside effective wells formed
by the radiation pressure. The trapped particles can gain an
energy substantially higher than the kinetic energy of the

—V?)(1+a3)]*2 For Ho<H<Hy, the trajectories corre- particles of the background plasma inside the soliton. The
spond to particles that are trapped in the field of the darlbunches of fast particles correlated with the variations of the
soliton. We see that the dark soliton contrary to the brightelectromagnetic field provide an observational signature of

soliton can advect trapped particles. While the particlegshe dark solitons.
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